
Benjamin Garcia

Monoalphabetic Substitution Cipher

Decryption Design:

The approach I took with decrypting the message was looking at word frequencies and

trying to piece together the key from there. I started with the word “the” since it’s the most

common 3-letter word, and it also has ‘t’ and ‘e’, the two most common letters. With that as a

starting point, I could keep looking for more frequent words and, using previously determined

letters, slowly figure out what the key was.

This, of course, wasn’t sufficient. There are a handful of letters that don’t appear in

common words such as ‘z’ and ‘x’. There was also the problem that there was a certain amount

of guessing and hoping, even with using letter and word frequency.

To address the first issue, at the end of my program, I just fill in the remaining letters

strictly by letter frequency. It’s not especially accurate, but it’s better than not guessing those

letters in the key. Also, I only guessed one letter at a time, then re-ran my word checks to make

sure nothing contradicted when guessing for a new word. If there were any contradictions, I reset

the letter to unknown, and tried again with a different guess.

For the second issue, I implemented some overlap in my guessing. That is, I would use

multiple words while trying to guess for a single letter. For example, when guessing for the letter

‘f’, we can examine two different common words: “?or” and “o?”. If the symbol being used is

the same for both of these common words, we can make the assumption that the unknown

symbol is probably ‘f’.

Accuracy:

Even after taking these measures, my program usually doesn’t have 100% accuracy when

determining the key. It does get pretty close, like around the 80% mark or so. So the decrypted

message is fairly intelligible to a human. If I were to work more on the project, I think I would

implement a spell check for the message after decryption, and then randomly reassign the letters

that I was most unsure of, until I had an accuracy above 90%. That seems like it would take a lot

of time though, so I didn’t go about implementing it.

The accuracy, of course, improves on larger inputs. When using inputs only around 500

letters, the guessed key is quite poor. When approaching 2,000 letters, it gets better, and most of

the time the outputed key is 70% accurate or higher. On inputs of about 5,000 letters, the

accuracy approaches 85%, but it doesn’t seem to go any higher than that, even on extremely

large inputs (like 10,000+).

